Phosphorylation of NBR1 by GSK3 modulates protein aggregation
نویسندگان
چکیده
The autophagy receptor NBR1 (neighbor of BRCA1 gene 1) binds UB/ubiquitin and the autophagosome-conjugated MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) proteins, thereby ensuring ubiquitinated protein degradation. Numerous neurodegenerative and neuromuscular diseases are associated with inappropriate aggregation of ubiquitinated proteins and GSK3 (glycogen synthase kinase 3) activity is involved in several of these proteinopathies. Here we show that NBR1 is a substrate of GSK3. NBR1 phosphorylation by GSK3 at Thr586 prevents the aggregation of ubiquitinated proteins and their selective autophagic degradation. Indeed, NBR1 phosphorylation decreases protein aggregation induced by puromycin or by the DES/desmin N342D mutant found in desminopathy patients and stabilizes ubiquitinated proteins. Importantly, decrease of protein aggregates is due to an inhibition of their formation and not to their autophagic degradation as confirmed by data on Atg7 knockout mice. The relevance of NBR1 phosphorylation in human pathology was investigated. Analysis of muscle biopsies of sporadic inclusion body myositis (sIBM) patients revealed a strong decrease of NBR1 phosphorylation in muscles of sIBM patients that directly correlated with the severity of protein aggregation. We propose that phosphorylation of NBR1 by GSK3 modulates the formation of protein aggregates and that this regulation mechanism is defective in a human muscle proteinopathy.
منابع مشابه
GSK3-mediated BCL-3 phosphorylation modulates its degradation and its oncogenicity.
The oncoprotein BCL-3 is a nuclear transcription factor that activates NF-kappaB target genes through formation of heterocomplexes with p50 or p52. BCL-3 is phosphorylated in vivo, but specific BCL-3 kinases have not been identified so far. In this report, we show that BCL-3 is a substrate for the protein kinase GSK3 and that GSK3-mediated BCL-3 phosphorylation, which is inhibited by Akt activa...
متن کاملPhosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments.
One of the hallmarks of Alzheimer's disease is the abnormal state of the microtubule-associated protein tau in neurons. It is both highly phosphorylated and aggregated into paired helical filaments, and it is commonly assumed that the hyperphosphorylation of tau causes its detachment from microtubules and promotes its assembly into PHFs. We have studied the relationship between the phosphorylat...
متن کاملGSK3-mediated CLASP2 phosphorylation modulates kinetochore dynamics.
Error-free chromosome segregation requires dynamic control of microtubule attachment to kinetochores, but how kinetochore-microtubule interactions are spatially and temporally controlled during mitosis remains incompletely understood. In addition to the NDC80 microtubule-binding complex, other proteins with demonstrated microtubule-binding activities localize to kinetochores. One such protein i...
متن کاملIntegrin-linked kinase regulates chondrocyte shape and proliferation.
The interaction of chondrocytes with the extracellular-matrix environment is mediated mainly by integrins. Ligated integrins are recruited to focal adhesions (FAs) together with scaffolding proteins and kinases, such as integrin-linked kinase (Ilk). Ilk binds the cytoplasmic domain of beta1-, beta2- and beta3-integrins and recruits adaptors and kinases, and is thought to stimulate downstream si...
متن کاملInhibition of GSK3 Phosphorylation of β-Catenin via Phosphorylated PPPSPXS Motifs of Wnt Coreceptor LRP6
The Wnt/beta-catenin signaling pathway plays essential roles in cell proliferation and differentiation, and deregulated beta-catenin protein levels lead to many types of human cancers. On activation by Wnt, the Wnt co-receptor LDL receptor related protein 6 (LRP6) is phosphorylated at multiple conserved intracellular PPPSPXS motifs by glycogen synthase kinase 3 (GSK3) and casein kinase 1 (CK1),...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2014